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A theory describing two-phase displacement in the gap between closely spaced planes 
is developed. The main assumptions of the theory are that the displaced fluid wets 
the walls, and that the capillary number Ca and the ratio of gap width to transverse 
characteristic length E are both small. Relatively mild restrictions apply to the ratio 
M of viscosities of displacing to displaced fluids; in particular the theory holds for 
M = o(Ca-;). We formulate the theory as a double asymptotic expansion in the 
small parameters E and Cai. The expansion in E is uniform while that in Ca; is not, 
necessitating the use of matched asymptotic expansions. The previous work of 
Bretherton (1961) is clarified and extended, and both the form and the constants in 
the effective boundary condition of Chouke, van Meurs & van der Poel (1959) and 
of Saffman & Taylor (1958) are determined. 

1. Introduction 
The Hele Shaw cell involving flow in thin gaps, since its description and exposition 

by Hele Shaw (1898), has proven to be a useful analogue for visualization and 
description of potential fields (Van Dyke 1982; Moore 1949). It has also been used 
to study two-phase displacements, and has provided useful insight into viscously 
driven instability phenomena (Chouke, van Meurs & van der Poel 1959; Saffman & 
Taylor 1958). I n  addition, certain model free-boundary problems can be posed for 
Hele Shaw flows and solved using free-streamline theory and the powerful techniques 
of potential theory (Saffman & Taylor 1958; McLean & Saffman 1981). However, 
in spite of a considerable amount of work on the solution of such two-phase flow 
problems, a rigorous derivation of the equations and boundary conditions has not 
been completed to date. As is well known, Hele Shaw theory for single-phase $ow 
results in the following equations relating the depth-averaged pressure and two- 
dimensional velocity fields : 

v-ii = 0, (1.la) 

Vp = - Apii-pg, (1 .16)  

with A = 3 /b2 ,  where b is the gap half-width. Saffman & Taylor (1958) have discussed 
the modification of Hele Shaw theory for the special case in which there is a wetting 
film of constant thickness on the solid surface when there are two phases present. 
Equations of the form of (1.1) still hold for the flow in two-phase regions, with the 
modifications that the constant A and the effective density p depend upon the 
viscosity ratio and the thickness ratio of the phases. 

Of course, in the case of simultaneous flow of two phases, i t  is necessary to write 
( 1 . 1 )  in each phase, and boundary conditions must be given which hold for the 
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(1  3) 

Here [ denotes a jump, y is the surface tension, 8 the apparent contact angle, and 
R the principal radius of curvature of the projection, onto the plane, of the tip of 
the meniscus separating the two phases (see figure 1). 

Equation (1.2) is obvious from the kinematics of the flow, but i t  is not clear that 
(1.3) is correct, except a t  equilibrium under conditions of no flow. Equation (1.3) 
appears to have been first suggested by Chouke et ul. (1959), and was adopted by 
Saffman & Taylor (1958), but not without reservation. These latter authors qualify 
their use of i t  (which was not extensive), by saying ‘The effect of surfare tension on 
the stability of the interface may depend upon a variety of physical conditions. The 
simplest assumption is to take the pressure drop through the interface as y( l / b  + 1/R) 
where R is the radius of curvature of the projection on the planes bounding the ccll 
of the tip of the meniscus.’ (Emphasis added.) 

Indeed, the recent work of McLean & Saffman (1981) has cast serious doubt on 
the validity of this boundary condition, and Saffman (1982) has carefully and lucidly 
discussed the issues involved. Thus an explicit derivation of the correct boundary 
condition is one of the primary concerns of this paper. 

This derivation is complicated in detail, as i t  involves the solution of the underlying 
free boundary problem. I n  order to proceed from a well-defined problem, it is 
necessary to make assumptions regarding the wetting conditions. We assume below 
that the displaced fluid wets the wall, so that problems involved with modelling the 
moving contact line are circumvented. Furthermore, in order to make analytical 
progress, it  is necessary to hinge a perturbation scheme about a limit for which the 
solution of the free boundary problem is tractable. As we shall see, the limit of small 
capillary number or small dimensionless displacement velocity is the appropriate one. 
We are thus led to reconsider a problem originally discussed by Bretherton (1961) 
involving the propagation of an inviscid bubble into a viscous fluid at small capillary 
number. Interestingly, this problem is also related to  other free-surface problems at 
low capillary number, and certain of Bretherton’s results were preceded by the ideas 
of Landau & Levich (1942), who discussed coating flows. Although the essential ideas 
implicit in these early works are those of matched solutions, neither paper is written 
with the modern techniques of matched asymptotic expansions at hand. I n  this 
regard, the papers of Ruschak & Scriven (1977) on flow from a slot and Wilson (1982) 
on coating flows for low capillary number provide useful background. We have found 
it necessary, in developing a rigorous theory of three-dimensional two-phase flow in 
Hele Shaw cells, to construct a formal expansion procedure in order to derive the 
correct form of (1.3). In  so doing, we clarify and strengthen certain results of 
Bretherton (1961). It is our hope that our exposition will also help readers to 
understand the earlier works as well. 

In  $2 we pose the free-boundary problem under consideration. Section 3 discusses 
the relevant scalings and the need for the use of a second set of lubrication layer 
scalings because of the non-uniformity of the zero-capillary-number limit. Section 4 
treaLx one-dimensional displacement and, in addition to the clarification of earlier 
works alluded to  above, provides an extension of the results of Bretherton (1961). 
Finally, in $5 we treat the full three-dimensional moving-boundary problem in the 
Hele Shaw approximation to derive the asymptotic form of the jump condition (1.3) 
valid for small capillary number and thin gaps. 



Two-phase displacement i n  Hele Shaw cells : theory 293 

- U -  / I  
Fluid l,ccl 2b - -~ Fluid 2 k - - _ _ _ _ ~ -  

--T 

-LJ* 

I +I+ III 

FIGURE 1. Two-phase flow in a Hele Shaw cell. The interface is 
located symmetrically a t  y = +h(z, 2 ) .  

2. Basic equations 
We shall be concerned with slow displacement of one fluid by another in a Hele 

Shaw cell. We consider the displacement to take place with constant velocity U ,  and 
the motion of both fluids to be in the Stokes regime. Thus the steady equations of 
change and boundary conditions are as follows: 

I 
I 

V ' U ,  = 0, 

VP, = p1v2u1, 

v*u,  = 0,  

vp, = p , V ~ u , ,  

( 2 . l a )  

( 2 . l b )  

u1 = - U ,  u, = w1 = 0 a t  y = + b ,  ( 2 . 2 )  

( 2 . 3 a )  

(2 .36 )  

( 2 . 3 ~ )  
a t  y = k h ( x ,  z ) ,  

u, = u,, 

n*u = 0,  

r*(ul-u2)*n = 0, 

( 2 . 3 d )  

v = O ,  u,=O at y = O .  ( 2 . 4 )  

Here the subscripts refer to quantities within each fluid, (u, u, w) are the components 
of u in the ( x ,  y ,  2)-directions, and figure 1 shows a schematic of this three-dimensional 
moving-boundary problem. Note that the problem formulation is written in a 
reference frame moving with the displacement velocity U. b and h(x ,  2) represent the 
half-thickness of the Hele Shaw cell and the shape of the interface respectively. t and 
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n represent the unit tangent and unit normal vectors to the interface and y the 
interfacial tension. f(z) represents the projection of tbe tip of the interface onto the 
(x, 2)-plane. The regions labelled 1,11, I11 are explained below. Our problem is to solve 
for the relationship between the velocity and pressure fields and h(x, z ) .  

We assume that the displaced fluid totally wets the wall, leaving a film on the wall 
as displacement proceeds. Furthermore, we have neglected gravity (a suitable Bond 
number is small) so that the solution is symmetric about the midplane y = 0. 

When the equations and boundary conditions (2.1)-(2.4) are non-dimensionalized, 
they are governed by the following three independent parameters : 

M is the viscosity ratio of the two immiscible fluids, E is the ratio of the two 
lengthscales b and L,  which are the half-thickness of the Hele Shaw cell and the 
characteristic length of the lateral variation respectively, and Ca is the capillary 
number, which represents the relative magnitude of the viscous force to the interfacial 
tension. Because the thickness of the Hele Shaw cell is very small and the flow is very 
slow, both e and Ca are very small quantities. Even though the full problem is very 
difficult to solve, it can be treated by developing a double-expansion method in E and 
Ca. As we shall see, however, the limit Ca-tO is not a uniform one, and we shall require 
use of matched asymptotic expansions in order to treat it.  

3. Scalings and regions 
The domain is divided into three regions : the constant-film-thickness region (region 

I), the front-meniscus region (region 11) and the clear-original-fluid region (region 111). 
In region I11 the flow is parabolic in y ,  and classical Hele Shaw theory applies. In  
region I the problem can be solved by the method of regular perturbation expansion 
in E and Ca if the film thickness is given. This analysis is given in the appendix of 
Saffman & Taylor (1958), and will not be repeated here, as i t  leads to a straightforward 
modification of Hele Shaw theory. A detailed analysis of region I1 is required to 
complete the problem. 

In region 11, because the capillary number is small, we begin by setting i t  to zero, 
with the result that  the interface is almost hydrostatic, and its shape is thus nearly 
circular. Pressure and interfacial tension are important in that region. This cannot 
be a uniform solution, however, since it cannot be smoothly matched to the 
constant-thickness solution of region I. Thus there exists a transition region in which 
the shape of the interface is deformed by viscous traction and thus viscous forces also 
become important. Therefore the solution by regular perturbation expansion in Ca 
will not be uniformly valid throughout region 11. and the method of matched 
asymptotic expansions should be used between two subregions ; the capillary-statics 
region where the shape of the interface is almost circular and the transition region 
where the lubrication approximation can be applied. 

It is necessary to examine region I1 more carefully. I n  the capillary-statics region 
the equation of change and boundary conditions can be non-dimensionalized by the 
following scales : 

Y 
b 

( x , y , z ) - ( b , b , L ) ,  u - u ,  P - - ,  h - b .  
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Csing these scales, the equation of change and boundary conditions become (see 
Atherton & Homsy, 1976): 

( 3 . 1 ~ )  

UIX + WIY + EWl, = 0, 

P l X  = C4UlXX + U1yy + e2U1zz), 

eP1, = Ca(w1xx + W1yy + e2w1,z), 

Z&, = Ca(wlxx + wlyy +e2u1zz), 

(3.1 b )  

u l = - l ,  w l = O ,  w l = O  a t  y = - - l ,  (3.2) 

u1 = u2, v1 = w2,  w1 = w2 a t  y = - h(z,  z ) ,  ( 3 . 3 ~ )  

u,h,+ewh, = -w a t  y = -h(z ,z) ,  (3.3b) 

(3.3d) 

uy = 0 ,  w = 0 at y = 0. (3.4) 

Here the subscripts z, y, z represent partial differentiation and [ul] represents the . .  jump 
u, -u2. The dimensionless viscosities are so defined that ,ul = 1 and ,u2 = M .  

In  the transition region, the variables should be resealed, because in this region 
the lengthscales change such that the viscous force becomes as important as pressure 
or interfacial tension. The new scales can be determined by examining the equation 
of motion for fluid 1 in the lubrication approximation and retaining all the three 
equally important forces : pressure, interfacial tension and viscous force. The new 
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FIGURE 2. Schematic showing the scales and coordinate systems for the different regions. 
(A : transition region, B : capillary-statics region). 

variables, rescaled for the transition region and denoted by an overbar, are 

(ti, 'u~, a2) = (u, Cah ,  w), 

P =  P, h= (i-h)Ca--%. 

For fluid 2 there is no reason for resealing the y-coordinate, so it is not stretched. 
x = - 1 is the location of origin of the coordinate system for the transition layer, and 
it will be determined by matching conditions. The locations of the origins of each 
region and their relative lengths are shown in figure 2. 

Using the rescaled variables, the equation of change and boundary conditions in 
the transition layer become 

ti2s+vzy + d 'ah , ,  = 0, 

z, = M(Cak2,+ Ca*ti2yy + c2Cah,,), 

(3.5a) 

(3.5b) 

(3.6) 
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[ (€Cdh ,U1 , -  h,Wl,) + 2€Cah,h,(€Ca~w,,- U I Z )  

+ Ca~(eCafU,,+~,,) (&€2Ca%;) +€CU(h,v,,-~,v1,)] 
= M C~%[(sC~rh ,u ,~-h ,W,~)  1 -  - + 2 d 7 ~ 3 h , h , ( ~ C ~ h , , -  1 -  - ti,,) 

+ ( eCaju,, + W,,) (@ - €2Cdh;) 
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4 -  - - + c2Ca%,,( 1 + Ca%g) - 2s2Cu3h,h, h,,] a t  y = h ( ~ ,  z ) ,  (3.7 e )  

U z y  = 0, G2 = 0 at  y = 0. (3.8) 

y and are unstretched and stretched independent variables in the vertical direction 
of fluid 2 and 1 respectively. The bar on y for fluid 2 is dropped to distinguish it from 
that of fluid 1. 

4. Low-capillary-number expansion 
From the equations and boundary conditions of the two subregions, i t  can be 

assumed that all unknown quantities may be expanded in simple powers of e and Cai 
as follows : 

(4.1) 1 
a0 

h(x, z )  = x € ~ C u w j ( x ,  z ) ,  

P ( x ,  y, z )  = x €iCu@piqx, y, z ) ,  

u(z,  y, 2) = x € ~ C U W ~ ( X ,  y, 2). 

i ,  j -0  
00 

i ,  j=o 
00 

i, j - 0  

This choice of gauge functions is justified if matching is possible a t  each order. 
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It is useful to develop the expansion procedure in each subregion of region I1 to 
lowest order first, as the full development is quite complicated. This has two 
advantages, the first of which is (we hope) ease of following the development on the 
part of the reader, and the second is to  put the development of Landau & Levich 
(1942) and of Bretherton (1961) into the modern context of matched asymptotic 
expansions. 

4.1. The capillary-statics region 

Substituting (4.1) into (3.1)-(3.4), the equations of change and boundary conditions 
for the capillary-statics region can be derived for each order of E and Ca. For the 
leading-order approximation in both E and Ca the equation and boundary conditions 
become 

( 4 . 2 ~ )  

(4.2b) 

(in writing (4.2b) we have assumed M = ~ ( C a - l ) ) ,  

(4.3) 

uoo = uy,  vyo = v2 00 at y = -hoo(s,z), (4.4a) 

uoo - 1 - - 1 ,  vyo=O a t  y=-1 ,  

uoohoo 1 x  = -.YO a t  y = -hoo(x, x ) ,  (4.4b) 

((1 -(h0,0)2) (~::+~::)+4h;'@:} 

= M{(1-((h0,0)2)(u~0,+v~~)+4h~ou~~} a t  y = -h""(x ,z) ,  ( 4 . 4 ~ )  

a t  y = - hoo(z, z ) ,  e O - f M ) O  = APOO = - 
( 1  + (h:o)2)j 

(4.4d) 

u!$ = 0, vi0 = 0 a t  y = 0. (4.5) 

As we can see, the viscous-force term is negligible in the equation of motion. 
Therefore we need not yet consider the flow field, and we can obtain the shape of 
the static meniscus by integrating the normal stress balance, which of course a t  this 
order is the Laplace-Young equation. The result is 

[l - {APo(x - f ( z ) )+  1}2]i. 
1 

APOO 
hOO(x,z) = ~ 

Two boundary conditions that were used for this integration, and which apply a t  all 
orders in Cai, are 

h,+-cc as z+f(z),) 

h = 0 a t  s = f ( z ) .  
(4.7) 

From (4.6) we see that the leading-order solution for the tip of the boundary is 
a circle, modulated in the spanwise direction by the function f(z). This solution 
obviously cannot be uniformly valid, and must be matched to a solution valid in the 
transition layer. This 'outer ' solution contains an unknown constant pressure jump 
APOO, which must be determined by applying matching conditions between the two 
subregions and will be discussed later. But we can easily anticipate that it will be 
1 ,  or, in dimensional terms, the pressure jump across a circular interface with radius 
b and the interfacial tension y .  



Two-phase displacement in Hele Xhaw cells : theory 299 

4.2. The transition region 

In  the transition region the equations and boundary conditions for the leading-order 
approximation can be derived from (3.5)-(3.8) as 

tq;+tq; = 0, fl; = tq&, Fg = 0, (4.8a) 

tg+$; = 0, Fg = 0, e; = M$!& (4.8b) 

- 

- 

(in writing (4.8b) we have assumed M = o(Ca-f)), 

G o = - l ,  q o = O  a t  y = O ,  (4.9) 

(4.lOa) 

(4.10b) 

( 4 . 1 0 ~ )  

(4.10d) 

a t  y = P(z, z ) ,  

G;=O, $ O = O  a t  y = l .  (4.1 1 )  

By solving these equations and matching to the constant-film thickness solution 
of Saffman & Taylor (1958) in region I, the velocity field is determined easily and 
a third-order differential equation for the shape of the interface can be derived from 

hOO- = 3 - (4.12) 

For details see Bretherton (1961). joo means the leading-order approximation for the 
constant film thickness, which is also determined by a matching condition. The 
differential equation (4.12) was encountered by Landau & Levich (1942) and 
Bretherton (1961), in apparently different problems. 

For the numerical integration, (4.12) may be transformed into a canonical form 
(4.15) by the transformation (4.13) and (4.14): 

- the kinematic condition as - h00 - t O O  

(h00)3 ' xxx 

hOO(Z, 2) 
H o 0 ( X , z )  = - too ' 

z+s X=-  
too ' 

3 ( P -  1 )  
(H00)3  ' 

HFxx = 

The condition for matching with region I is simply 

Hoo-tl as X - t - c o .  

(4.13) 

(4.14) 

(4.15) 

(4.16) 

By linearizing (4.15) about Hoo = 1 ,  an analytic solution for Hoo valid as X+- 00 

is determined as 
(4.17) 

For more details see Bretherton (1961). Because the arbitrary shift of coordinates 
s, which may be a function of z,  is introduced, we can pick an arbitrary value for 
A(z)  without loss of generality. Thus the differential equation can be integrated 
numerically with boundary conditions set from (4.17) a t  some finite value of X .  Figure 
3 shows the function H o o ( X ) ,  determined numerically, together with a function Hol 

HOO(X, 2) = 1 + A(z) exp 
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FIGURE 3. The functions H o o ( X )  and H" ' (X)  as  determined by  numerical integration. 

to be discussed below. These numerical results were determined using initial-value 
techniques and a 4th-order Runge-Kutta routine. The specific values are a result of 
setting the arbitrary initial conditions (equivalently A(2)  in (4.17)). Because Hon goes 
to infinity as X becomes large, i t  is possible to  show that it has the following quadratic 
form when X is very large: 

H y x ,  2 )  = +C0XZ + C,(Z) X + C,(Z). (4.18) 

Therefore, in terms of the original scaling (see (4.13)), 

as x-2  a2 (4.19) 

Bcoause C, is invariant under a shift along the X-axis, it is not a function of 2.  The 
unknowns tno and S ( Z )  are determined by matching conditions. 

4.3. The matching conditions 

Matching of the solution in the transition layer with that in region I is ensured by 
(4.16), but is incomplete until the thickness too is determined. This and all other 
quantities are determined by matching with the solution in the capillary statics 
region. This matching condition is given by the following simple equation : 

(4.20) 

The limits are interpreted in terms of the matching principle of Van Dyke (1964). 
By expanding h(x,  z )  about r = - I  using Taylor-series expansion, rewriting the 
expansion in inner variables, and comparing i t  with the left-hand side term by term, 
matching conditions for each order can easily be determined. They are 

(4.21) 

(4.22a) 

hO'( -I", 2) = 0;  (4.22b) 
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CO h!g( -10 ,  z )  = -: too ' 

1 - (3$ + C, s + CJOO 

( 4 . 2 3 ~ )  

(4.23 b )  

( 4 . 2 3 ~ )  

Obviously these matching conditions give information on higher-order corrections 
to the leading-order solution presently under discussion. Extracting those condi- 
tions applying only to  hoo, we have 

h O O (  - 1 0 ,  z )  = 1 ,  

h;o( -10 ,z )  = 0, 
(4.24) 

Physically these conditions state that the outer static solution apparently meets the 
wall with zero slope (an apparent contact angle of 180°), and that its curvature a t  
that  point matches that of the inner transition-layer solution. The first condition 
serves to locate the origin of the transition layer a t  the apparent zero of the outer 
solution. I n  this sense, the present problem is analogous to  those discussed by 
Ruschak & Scriven (1977) and by Renk, Wayner & Homsy (1978). Using (4.21) and 
(4 .22a) ,  A P o  and lo can be determined: 

APO = 1, 

10 = 1 -f(z). 

( 4 . 2 5 ~ )  

(4.25 b )  

Because the origin of the coordinate system is moving with the interface, we can 
anticipate that the origin 1, of the transition region is not a function of Ca. This can 
also be proved by induction. Therefore 1 has only one superscript, which represents 
the order of E .  Knowing lo and APOO, the last of (4.24) can be applied, and ioO is 
determined as 

(4.26) 

,OO was stretched by Caj, and Co is known to be 1.337 from the result of numerical 
integration; therefore the dimensionless film thickness too is given by 

(4.27) 

4.4. Higher-order corrections 

Thus far we have developed a rational expansion procedure, valid for small Ca, and 
have recovered the previous results of Landau & Levich (1942) and Bretherton (1961). 
These show that, a t  leading order in Ca, the tip of the advancing interface is circular 
in form and, except for a thin film of thickness O(Can), fills the slot with radius 1 .  
Thus the pressure drop across this interface, given by APO,  is also 1 .  I n  this 
subsection, we will compute higher-order corrections to this pressure drop and to the 
film thickness. 

Up to  O(Ca3) it is easy to  see that the viscous force is negligible, and only the normal 
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stress balance is of importance in the capillary statics region. Thus we have, a t  
O(e°Ca+ ) , 

(4.28) 

Integrating (4.28) with the two boundary conditions from (4.7) and applying the 
matching condition (4.22b), A P 1  and hol(z, z )  are shown to be zero. This may be seen 
simply because the O(Ca+) problem is homogeneous. Therefore from (4.23h) the shift 
S ( Z )  is determined as 

s(Z)  = -C1(Z). (4.29) 

This completes the lowest-order solution as i t  fixes the location of the solution Hoo 
relative to the origin of the transition layer. 

Because hol is zero, the normal-stress balance for the next order in Ca can be 
simplified to 

(4.30) 

a t  O(eOCa5). With reference to equation (3.3d), this form is correct if M = o(Ca-4). 
This is the most stringent restriction on t8he viscosity ratio in our theory. Similarly 
(4.30) can be integrated to  give 

(4.31) 

By applying the matching condition ( 4 . 2 3 ~ )  to  (4.31), A P 2  is determined as 

A P 2  = C,(Z)C~-&'?(Z). (4.32) 

Even though C, and C, are functions of 2, we can see from (4.18) that C,(Z) CO-$Cf(z) 
is invariant undcr the shift of the origin along the X-axis. Therefore A P 2  is not a 
function of x but a constant, and the numerical value is approximately 3.80 (Ituschak 
1974). Therefore the pressure jump AP is given by 

A P  = 1+3.80Ca~+O(Ca,e). (4.33) 

This result verifies Rretherton's result (Bretherton 1961, p. 172) in a rigorous manner 
by applying the full matching conditions. 

In  the transition region, the equation of motion for O(e°Caf) is still a lubrication 
approximation and independent of M if we apply the earlier restriction that 
M = o(Ca-i). Therefore it can be easily solved to give the following third-order 
differential equation for hol : 

(4.34) 

tol represents the O(e°Ca*) correction term to the film thickness of region I. Equation 
(4.34) can be transformed into a canonical form by a transformation similar to (4.13) 
and (4.14). Thus we find 

HO'(2HOO - 3) + R(2) HOO 
HYX*(X ,  2 )  = - 3  , 

(H00)4  

with matching condition 

(4.35) 

HOl-tR(z), Hoo+l  as X-+-co,  (4.36) 

whcrc R(x)  = tol/toO. 
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FIGURE 4. The dependence of Do upon R as determined by numerical integration of (4.35) for 
various values of R. The solid dots are computed points. 

Using the same procedure as a t  lower orders, the analytic solution for Hol valid 
as X+- 00 is determined as 

H O ~ ( X ,  z) = ~ ( z )  + ~ ( z )  e3’x. (4.37) 

Since Hoo +00 as z +GO, (4.35) shows that Hg,, approaches zero as X becomes large. 
Therefore the behaviour of Hol as X +  00 is also expressed as the following quadratic 
equation : 

Therefore 
HOl(X,Z) = p o ( z ) X z + D , ( z ) x + D 2 ( z ) .  (4.38) 

(4.39) 

Because Do is invariant under the shift along the X-axis, Do(Z) depends on R(z) only. 
But D,(z) and D,(z) depend on both R(2) and B(z) .  The matching conditions a t  O(so) 
and O(Ca) may be obtained by applying the matching principle to (4.20) a t  higher 

D order : 
hi;( -10 ,z )  = -0 too ’ ( 4 . 4 0 ~ )  

(4.40 b )  

(4.40 c )  

a t  0(soCu). Because hol is zero everywhere, Do must be zero. Therefore we must find 
that value of R which makes Do zero, and thus the matching condition may be 
thought of as providing a boundary condition for (4.35). 

Figure 4 shows the dependence of Do upon R, as determined by numerical 
integration of (4.35) for various values of R. 
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Since the outer solution ho2(x, z ) ,  s, ioo and Do are all known, D , ( z )  can be determined 
from (4 .40b) .  Therefore B(z) and D,(Z) can also be determined through the numerical 
integration for Hol .  Because R(z)  is zero we have 

t " (Z )  = 0. (4 .41)  

This tells us that the film thickness of region I does not have an O(EOCU$) correction, 
even though the profile of the transition region does have a correction at  this order. 
This correction, denoted as H o l ,  is given in figure 3. It represents a slight adjustment 
to  the thickness profile in the transition region, but, because the first correction to 
AP in the capillary-statics region is O(Caj),  this profile cannot have any curvature 
as z+ CO. The first correction to  the film thickness will also be O(Caj),  i.e. j o z  will be 
non-zero, but we shall not pursue its calculation here. 

- 

5.  Small-t. expansion 
So far we have only discussed higher-order correction terms in an expansion in Cat, 

which are induced by the action of viscous forces within the transition layer. 
We now wish to investigate the higher-order correction terms in e, which will give 

us the correction that is set up by the z-variation of the interface. Because the 
viscous-force term is negligible in the equations of motion for the capillary-statics 
region through O(Cai) regardless of e, the normal stress balance is still the only 
important condition. The normal stress balance a t  O(eCa0) can be simplified as 

It can be integrated with the two boundary conditions from (4 .7)  to give 

x - - f ( z )  
( i - ( ~ - - f ( z ) + i ) ~ } ~  

h"(x ,z )  = AP'O 

The matching conditions for O ( E )  are given by 

O(ECU0) : 

O(€CU~)  : 

h10( - 1 0 , z )  = 0;  

hll(  -1O.z) = 0. 

( 5 . 3 )  

(5 .4a)  

i?(z) hPZ( - 10 ,  2) = 0;  (5 .4b)  

(5 .6)  

A P 0  is shown to be zero from (5 .3) ,  thus h l o ( z ,  z )  is zero everywhere. 
With this result, the normal stress balance a t  the next order in Cai is given by 

(5.6) 

a t  O(eCa:). From the matching condition ( 5 . 4 ~ 2 )  it  is obvious that APl l  and hl1(x ,  z )  
are also zero. 

In the transition region a t  O(eCb0) the equations of change can be solved to give 
another third-order differential equation for the shape of the interface as follows : 
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This differential equation is exactly the same as (4.34). Therefore, by following the 
same procedure along with the matching condition (5.5) applied to the asymptotic 
form of hl0, tl0 can be determined to be zero. 

Proceeding to  O(e2), the extremely complicated normal stress balance ( 3 . 3 4  for the 
capillary-statics region a t  O(e2Cao) can be simplified considerably, since hol(x ,  z )  is 
known to be zero. Thus we find, a t  O(e2Ca0), 

1 
ZO-pZO = AP20 =- [{hFx( 1 + ( h p ) 2 )  - 3h:: h:' hio} (1 + (h:o)2)% 1 

+ {(h;0)2 h!g.( 1 + (h:o)2) + h::( 1 + (hp)?' 

- 2hi0 h;Oh:;( 1 + (h:')') -ih:$(h;"))"}], 

which may be written 

Because hoo(x, z )  is known as the family of modulated circles ((4.6) with A P o  = l ) ,  
(5.9) may be further simplified to read 

Here the primc refers to differentiation with respect to z .  With the two boundary 
conditions from (4.7), (5.10) can be integrated to give 

-+( , f ' )2{1 -(x-f+ 1)2)1-t7Cf". (5.11) 

The matching conditions a t  O(e2)  are given by 

h20( - Zo, Z )  = 0 ; 

h21( -Zo ,  Z )  = 0, 

(5.12) 

(5.13a) 

hio( - lo ,  Z )  - l(2)h:$( - lo ,  Z )  = 0 ;  (5.13 6) 

O(e2C'af). 

{hZ2( - Zo, 2 )  - Z(2)h:2( - lo ,  2 )  j + hi1( - lo ,  Z )  Z+'h2' xx(-Zo,z)P = -h2O(0o,Z). (5.14) 

A P 0  can thus be determined by applying (5.12): 

ApZO = -+xf", (5.15) 

This completes the solution in the capillary-statics region through O(e2). 
We have determined the order of the correction to (5.15) as follows: The normal 

stress balance in thtx capillary statics region has been expanded to O(e2Ca&). Because 
hol, hl0 and hll are known to be zero, the resulting complicated equation can be 

(5.16) 
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a t  O(e2Caf). It is obvious from the matching condition (5.13~) that  A P 1  and hZ1(x, z )  
arc zero. At O(e2Ca%) i t  is also obvious that neither hZ2 nor A P 2  is zero, since hZ2( - lo ,  z )  
is not zero from (5.14). Thus the correction is O(e2Caf). 

From these results, AP is given by 

AP = 1 + 3.80Caf - inf ”e2 + O(Ca, e2Cag). (5.17) 

As for the transition region a t  O(e2Cao), the solution for the velocity field and 
kinematic condition generate another third-order differential equation (5.18), which 
in principle gives us the correction term to the film thickness set up by the z-variation 
of the interface: 

k ( X ,  Z )  = - 3  (5.18) 

This differential equation is also the same as (4.34). Therefore, by following the same 
procedure. h 2 O  can be given for large x as 

~ z o ( 2 ~ 0 0  - 3too) + t z o ~ o o  

( 6 0 9 4  

From the matching condition (5.14), 

Therefore 
Do@) = -t”“(nf”+ ( f ’ ) 2 } .  

(5.20) 

(5.21) 

If the relation between Do and R (= ~ 2 0 / ~ o o )  is known, tZ0 can be determined without 
specifying f ( z ) .  As a result of numerical integration figure 4 shows that Do is related 
to K by the following equation : 

Do(z) = - 1.337R(z). (5.22) 

Therefore tZ0 can be determined explicitly as 

1 
1.337 

t 20  = __ ( t ” ) 2 { ~ 7 t f ”  + ( f ’ ) ” .  (5 .23)  

too is known from $4; therefore 

tZ0 = 1.337{inf” + ( f ’ ) 2 } .  (5.24) 

Tticrefore from these results the dimensionless film thickness t is given by 

t = l.337[1 +{ i f ”+  (f’)’} e2] Caf + o(Cd, ~ ‘ C U ) .  (5.25) 

This result tells u s  that the film thickness of region I has a z-variation a t  O(e2Cai). 
It can be proved that the solution of region I itself admits the z-variation of the film 
thickness to that order, so that, no inconsistency is present. 

6. Summary and conclusions 
In  this paper we have presented a theory of two-phase displacement in a Hele Shaw 

cell which is valid asymptotically in the limit of slow flow. I n  developing this theory, 
we have made the assumptions that both the capillary number and the lateral 
variations in the interfacial position (relative to the gap spacing) are small quantities. 
It is furthermore necessary to assume that the displaced fluid wets the walls of the 
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gap; otherwise a moving contact line is present, and a suitable model must be 
proposed for describing its behaviour. Given these assumptions, we have developed 
the solution as an asymptotic double expansion in the small parameters 6 and Ca. 
The expansion in 6 is found to be uniform while that in Ca is not ; the small-Ca limit 
has been formulated as a matched asymptotic expansion. The results are seen to  be 
independent of the viscosity ratio M a s  long as M = o(Ca-4). This formulation allows 
a rational expansion to be carried out, and earlier work by Landau & Levich (1942) 
and Bretherton (1961), which is obscure a t  points, is clarified. I n  addition, new results 
involving the lateral variation and higher-order corrections to Bretherton’s results are 
obtained. 

Our formulation of the matching procedure shows clearly how the origin of the 
transition-layer profile may be unambiguously determined, and further shows how 
the ad hoc matching applied by Landau & Levich and Bretherton is correct. In  
particular, it shows how the curvature in the capillary statics region is determined 
as a result of matching with the transition layer, whose location is in turn determined 
as being near the apparent zero of the outer solution. It also shows how the dynamic 
contact angle under wetting conditions may be developed as an expansion in capillary 
number. 

Our final results may be summarized as follows. For the pressure jump across the 
interface, we find 

- = 1 +3 .80Caz -~f”e2+O(Ca ,  szCag). 
Y l b  

(6.1) 

We have justified the O(Ca5) term in this expression by showing that, although there 
is a change in profile a t  O(Cai), i t  contributes no change in the tip curvature, and 
thus the O(Ca8) term may be computed as the pressure loss for flow in the transition 
layer, computed from the lowest-order solution. The O ( 2 )  term of (6.1) is new, and 
provides the leading-order boundary condition for problems with transverse curvature. 
As explained in 5 1 ,  the form of this boundary condition had only been speculated 
upon previously; our work gives for the first time the explicit relationship. Finally 
we have shown that the film thickness is given by 

AP 

t = 1.337CaJ{l+ s2(+f” + (f’)”} + O(e2Ca, Caj), (6.2) 

and that, unlike the coating-flow problem discussed by Wilson (1982), the O(Caf) 
correction to the film thickness is zero. 

We gratefully acknowledge the support of the Office of Basic Energy Sciences of 
the U.S. Department of Energy. 
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